mapsontheweb:

Spread of the Black Death

(Source: timemaps.com)

hydrogeneportfolio:

"Maybe we’re on Mars because of the magnificent science that can be done there - the gates of the wonder world are opening in our time. Maybe we’re on Mars because we have to be, because there’s a deep nomadic impulse built into us by the evolutionary process, we come after all, from hunter gatherers, and for 99.9% of our tenure on Earth we’ve been wanderers. And, the next place to wander to, is Mars. But whatever the reason you’re on Mars is, I’m glad you’re there. And I wish I was with you.

 Carl Sagan


txchnologist:

Flow Masters

by Michael Keller

Over the last decade, materials scientists have been trying really hard to keep from getting wet. To that end, they’ve made huge strides developing coatings that so thoroughly repel dirt and water, they seem almost magic. Their secret? Recreating the nanoscale structures that some organisms employ to stay clean and dry and to redirect liquid flow. 

Among researchers’ muses from the natural world are the stenocara beetle, lotus and nasturtium leaves, and the wings of butterflies. The National Science Foundation has compiled some compelling visual examples of natural and synthesized superhydrophobic surfaces. See the full video below. 

Read More


nubbsgalore:

circumhorizontal arcs photographed by (click pic) david england, andy cripe, del zane, todd sackmann and brandon rios. this atmospheric phenomenon, otherwise known as a fire rainbow, is created when light from a sun that is at least 58 degrees above the horizon passes through the hexagonal ice crystals that form cirrus clouds which, because of quick cloud formation, have become horizontally aligned. (see also: previous cloud posts)


ucresearch:

How diamonds and lasers can recreate Jupiter’s core


Understanding what the insides of the biggest planets in the universe has been largely wrapped up in theories.  Now scientists at Lawrence Livermore National Lab have recreated these conditions with the help of diamonds and the world’s largest laser:

Though diamond is the least compressible material known, the researchers were able to compress it to an unprecedented density, greater than lead at ambient conditions.

The hope is to understand how these planets evolve over time by being able to reproduce their immense pressures.  You can read more about it here.

(Source: llnl.gov)


labphoto:

Crystals from the lab: This project on Behance is a small collection of the various crystals formed from different compounds in the past few years of research what has been done in the laboratory where I work. 

For more adorable picture from crystals, visit: Crystals from the lab on Behance 


labphoto:

Crystals from the lab: This project on Behance is a small collection of the various crystals formed from different compounds in the past few years of research what has been done in the laboratory where I work. 

For more adorable picture from crystals, visit: Crystals from the lab on Behance 

(Source: wonderlandvibes)

trigonometry-is-my-bitch:

Fold a piece of paper in half 103 times, and its wider than the observable universe.

this is due to exponential growth; the increase in previous thickness is doubled each time you fold the piece of paper again. physically you could probably only fold a piece of paper about 7 - 8 times on your own.

Given a paper large enough—and enough energy—you can fold it as many times as you want. If you fold it 103 times, the thickness of your paper will be larger than the observable Universe; 93 billion light-years distance.

How can a 0.0039-inch-thick paper get to be as thick as the Universe?

The answer is simple: Exponential growth. The average paper thickness in 1/10th of a millimeter (0.0039 inches.) If you perfectly fold the paper in half, you will double its thickness.

Folding the paper in half a third time will get you about the thickness of a nail.

Seven folds will be about the thickness of a notebook of 128 pages.

10 folds and the paper will be about the width of a hand.

23 folds will get you to one kilometer—3,280 feet.

30 folds will get you to space. Your paper will be now 100 kilometers high.

Keep folding it. 42 folds will get you to the Moon. With 51 you will burn in the Sun.

Now fast forward to 81 folds and your paper will be 127,786 light-years, almost as thick as the Andromeda Galaxy, estimated at 141,000 light-years across.

90 folds will make your paper 130.8 million light-years across, bigger than the Virgo Supercluster, estimated at 110 million light-years. The Virgo Supercluster contains the Local Galactic Group—with Andromeda and our own Milky Way—and about 100 other galaxy groups.

And finally, at 103 folds, you will get outside of the observable Universe, which is estimated at 93 billion light-years in diameters.

[source]